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Some exact solutions of the steady magnetohydrodynamic equations for a 
perfectly conducting inviscid self-gravitating incompressible fluid are discussed. 
It is shown that there exist solutions for which the free surface of the liquid is 
that of a planetary ellipsoid and rotates with constant angular velocity about 
its axis. The stability of the equilibrium configuration is not investigated. 

1. Introduction 
The problem of mechanical equilibrium of a perfectly conducting incompres- 

sible fluid in the presence of a magnetic field has received considerable attention 
because of its importance in astrophysical applications. Ferraro (1954) considered 
the case of a uniform liquid star having uniform solid body rotation about its 
axis of symmetry in the presence of a certain poloidal magnetic field. He assumed 
that the gravitational energy of the star is much larger than its magnetic energy 
and obtained a Grst-order expansion for the surface of the star. Ferraro’s work 
was extended by Roberts (1955) who obtained a series expansion for the surface 
of a body in the presence of Ferraro’s field, but expressed some doubt about the 
convergence of the series. Lust & Schluter (1954) investigated the case where the 
electric current and magnetic field are parallel everywhere and thus the Lorentz 
force does not affect the fluid motion. Solutions for a large class of force free 
fields were produced by Chandrasekhar (1956a). Prendergast (1 956) investigated 
the equilibrium of a self-gravitating liquid sphere in the presence of a poloidal 
magnetic field. The magnetic field is within the conductor and is zero on the 
surface of the liquid. For this case the Lorentz force is irrotational. 

More recently Ranger (1970) produced some interesting generalizations of 
these solutions. He dealt with axisymmetric configurations where there is a 
finite, though not uniform, fluid motion inside a perfectly conducting liquid sphere 
in the presence of a magnetic field. Unfortunately not all solutions presented by 
Ranger make the pressure a constant on the fluid surface. Also for some of his 
solutions the electric current or the vorticity becomes infinite on the surface of 
the liquid. These solutions, of course, cannot have any significance for astro- 
physical applications. I n  this paper we examine these solutions and, since we 
refer them to astrophysical configurations, we also take account of the gravita- 
tional potential of the fluid. We show that when the fluid velocity has only an 
azimuthal component the appropriate free surface is that of a planetary ellipsoid. 
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The sphere is, of course, a special case of this configuration and corresponds to 
the case when the fluid velocity and magnetic field are zero on the surface of the 
fluid, We also discuss the case where the magnetic field has only an azimuthal 
component. 

2. Equations of the problem 

fluid of density p are 
The steady-state equations for an inviscid perfectly conducting incompressible 

PV . VV = - V(p +p!2 + BB') + B . VB, 
V x (VX B) = 0, 

(1) 

(2) 

V.V = 0, V.B = 0, (3) 

where v is the velocity, B the magnetic field and !2 the gravitational potential 
per unit mass. Since we are going to apply our solution to astrophysical problems 
we must not ignore gravity. We make use of cylindrical polar co-ordinates (a, q5, z )  
and consider the case where the velocity and magnetic field are symmetric about 
the z axis. The velocity and magnetic field may be expressed by 

where @, x, V and U are functions of @ and z. 
Note that the flow field and magnetic field are interchangeable. [This becomes 

quite obvious if we replace v by u/p&in (l), (2) and (3) and then take the curl of 
(I).] The interchange of v and B, however, implies, in general, modification ofp. 

A n  obvious solution of (1 ), (2) and (3) is 

B = pbv, p++B2 = constant. 

The stability of this solution was discussed by Chandrasekhar (1956b). 
Equations ( 1 )-( 3) possess exact solutions for several simple but interesting 

cases. These solutions have been discussed in some detail by Ranger (1970) for 
the case when the boundary of the fluid region is spherical. Below we re-examine 
these solutions and show that the appropriate boundary is that of an ellipsoid 
of revolution. The case of a spherical boundary is obtained from that of an ellipsoid 
when a certain parameter is set equal to zero. 

Since the boundary of the fluid region is a streamline we must have @ = con- 
stant, say $ = 0, on the boundary. We also make the assumption that the 
exterior of the fluid region is non-conducting and therefore x = 0 on the boundary 
of the fluid region. 
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3. Flow field with only an azimuthal component 

if we choose 

where f and g are arbitrary functions and x satisfies the equation 

In  this case @ = 0 and the equations of the problem are satisfied (Ranger 1970) 

= @xx), u = dx), 

D2x + P , w @ ( X ) f  '(XI + dx) 9 ' W  = +F(x).  (6) 

Here a prime denotes differentiatiton, F is an arbitrary function and 

a 2  1 a a 2  

ai-ij2 G aiz az2* 
+- 0 2  =---- 

The pressure p ,  obtained by integrating (l), is given by 

p+p$2 = ipi-ijaf2-/F(x) d x +  constant. (7) 

(8) 

Since on the free surface of the fluid region x = 0 and p must be zero we must 
have 

$2, = +G," f 2( 0) + constant, 

where a subscript s denotes a surface value of the variables. If f(0) = 0 then 
is a constant and therefore the fluid region is a sphere. If f(0) $1 0, then the only 
possible spheroidal body that satisfies (8) is the planetary ellipsoid, as was shown 
by Maclaurin. If G is the gravitational constant and e is the eccentricity of a 
meridian section of the ellipsoid then 

f2(0)/2.rrpG = (1 -e2)te-2[(3-2e2)e-1sin-le-3(1-e2)*]. (9) 

The maximum value of the right-hand side of (9) is 0-2247, corresponding to 
e = 0.9299. Thus iff 2(0)/27rpG > 0.2247 there are no possible equilibrium con- 
figurations. For any smaller value off z(0)/2npG there are two possible equilibrium 
configurations the eccentricity being in one case less and in the other greater than 
0.9299. Note that as f(0) -+ 0 either e -+ 0 and the ellipsoid tends to become a 
sphere or e -+ 1 and the ellipsoid tends to become a disk. For details and further 
references on this see Lamb (1932) and Chandrasekhar (1969). 

Further progress can only be made by assuming some forms for f, g and F. 

f f '=  K/p, g = a x  and F =  KA, (10) 
We set 

where K ,  a and A are constants and so 

where wo[ = f(O)] is the constant angular velocity of the free surface where x = 0. 
Since the fluid region is a planetary ellipsoid it is convenient to introduce the 

transformation 

z = Kcosesinhr = K,& ZZ = Ksinecoshr = ~ ( 1 - , ~ 2 ) 4 ( 1 + < 2 ) 4 ,  (12) 

where ,u = cos 0 and 5 = sinhr. The surface of the ellipsoid is given by 7 = T,, 
or 6 = C0, where the eccentricity e ,  the semi-major axis a and semi-minor axis c 
are connected by 

a = KQ, c = K(<:+ I)*, e = (<t+ 1)-4. 
3-2 



36 c. xozou 

On making use of (10) and (12), equation (6) becomes 

= -K@(1 -/A’) (1 +c2) [(1+ c2) (1  - /A~) -AO] ,  (13) 
where A ,  = A/$. 

The case a = 0 

In this case the magnetic field is poloidal. The solution for the homogeneous 
equation (13) is well known (Lamb 1932) and we construct a particular integral 
by setting 

x = (1-/A2)f,(S)+(1-/A2)(5/A2--l)f3(c)+(~-/A2)(21/A4--4~2+l)f5(S). 

On substituting in (13) and equating coefficients of powers of p, after some 
algebra, we fkd  

(1+CZ))f’;-2f1 = - ( K ~ ~ / 3 5 ) ( 1 + g ’ ) [ 4 ( 1 + g ~ )  (1+7c2)-7Ao(l+5c2)], (14) 

(1 + C 2 ) f [ -  12f3 = ( K ~ ~ / 1 5 )  ( 1  +g2) [(1 + I 2 )  (35’- 1)+  3A,] (15) 

and (1-k[2)f:-30f5 = (KK6/21)(1+c2)2. (16) 

The solutions of (14), (15) and (16) corresponding to a finite velocity within the 
ellipsoid and x(c0) = 0 are 

fi = ( K ~ ~ / 7 O ) ( g ; - g ~ ) ( g ~ + 1 )  (2gz+2c;+4-7Ao), 

and 

It is obvious that this solution makes the magnetic field, electric current and 
fluid velocity finite within and on the ellipsoid. Also with the proper choice of 
K and A,, for example, when K2/c6/p and K/c6A,/p are sufficiently small, f 2  (see 
(1 1) )  is always positive within the ellipsoid and thus the vorticity is also finite 
everywhere in the fluid region. If in the above analysis we let w, --f 0, K -+ 0 and 
5 --f 00 so that K[  = r,  KC, = R, where r is the distance from the origin, we have the 
case of a sphere. The radius of the sphere is, of course, R. Then if K + 0 as r --f R 
the vorticity tends to  infinity like (R - r ) t .  

The case a + 0 

In  the spherical case (w, = 0 )  the solution of the equation corresponding to (13) 
involves the spherical Bessel functions J+ and Js (Ranger 1970) and is straight- 
forward. Indeed with the proper choice of A and a, one can make the vorticity 
finite on the surface of the sphere. Yor the ellipsoidal case considered here, 
however, the solution of (13) involves spheroidal wave functions of the first 
kind and is a little more involved. 
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For the complementary function of (13) we assume solutions of the form 

(17) 

(18) 

X(C)  Y ( p )  and, after a little algebra, we obtain 

(1 -pZ) Y"+ (uWp2+b) Y = 0, 

(1 + C z )  X" + (aWC2- b )  X = 0, 

where b is a separation constant. 
The solutions of (17) and (18) that are finite within our ellipsoid are 

(1 -p2)*Ps:(p, -*cc"K"), 

(1 + C"* sp( - iC, &cc%CZ), 

where Psi and SZ1) are spheroidal wave functions of the first kind. Here we are 
following the notation used in Erddlyi (1955) where information and further 
references on spheroidal wave functions may be found. We can now construct 
a solution of (13) satisfying the boundary condition ~(t,,) = 0 as follows. 

We multiply (13) throughout by C2+p2 and express the right-hand side of the 
resulting equation in terms of Psi,. Thus our equation (13) becomes 

a 2  a2 [ ( ~ 2  + 1)  + (1 -p2) + a2K2 (62  + pa)] x = ~ g z n ( ~ )  (1 -p2)& psf(P3 - aa2K2) ,  

(19) 
where g, is a cubic equation in Cz. 

We now assume that 

x = CGzn(C) (1 - p 2 ) * p ~ i n ( p ,  - *a%?). 

If we substitute this expression in (19) and equate coefficients of Psin we obtain 

(1 + C2) QAn(C> + ( a ' ~ ~ C ~ - b z n )  Gzn(C) = gzn(C>* 

Gzn(C) = [C(l+ C')*fiit"( - i& *a"') + H2n(C)I ,  

(20) 

The solution of this equation is 

where H2,(g) is a particular integral and the constant C is adjusted so that 

It must be noted that, for all a, the poloidal magnetic field at the surface of the 
ellipsoid is tangential and not zero. Since it is assumed that the magnetic field 
external to the ellipsoid is zero there must exist a toroidal current sheet over the 
ellipsoidal surface. This exerts a magnetic pressure $l3: normal to the surface of 
the ellipsoid in the outward direction. This pressure was ignored in the above 
analysis. The magnetic pressure was also ignored by Chandrasekhar (1956~) 
in a similar configuration. He assumed that the fluid is confined in its region. 
In  view of (7) and the fact that x = 0 at  the boundary, we can neglect the magnetic 
pressure only when I?: < 2p!& Our solution can therefore be interpreted as 
representing Maclaurin's spheroid in the presence of a small internal magnetic 
field which enables the interior of the spheroid to have a small additional angular 
velocity w1 which, in view of (1 I), is given by w1 = KX/po,. 

We also note the existence of an exact solution in magnetohydrostatics in a, 
perfectly conducting medium. This represents a poloidal magnetic field in the 

Gzn(C0)  = 0- 
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form of a spherical magnetic vortex embedded in an otherwise uniform external 
magnetic field, exactly like Hill’s spherical vortex in a uniform stream, with the 
magnetic field just replacing the velocity field. 

4. Flow field when the magnetic field has only a toroidal component 

in the equations already discussed are interchanged. We thus have 
In this case x = 0,  $ + 0 and the roles of the magnetic field and velocity field 

u = W($), v = g($) and D2$+ (G4/ro)f($)f’(P)+s($.)g’($) = G2F($)- (21) 

The pressure p ,  obtained by integrating (l), is given by 

p+p~++pw2 = - a 2 f 2 + p S ~ ( $ ) a $ +  constant. (22) 

Equation (22) is a little different from the corresponding expressions given by 
Ranger (1970). Thus the first term on the right-hand side of (22) is twice as large 
as the corresponding term of Ranger’s equation (57). Also the right-hand side 
of (22 )  has a sign opposite to that of his equations ( 1  1 )  and (30). 

Since $ = 0 on the surface, if we exclude the case where electric currents are 
ejected from the surface of the fluid, though this case perhaps represents more 
realistic configurations for astrophysical applications, we must havef( 0)  = 0. The 
zero off(O), corresponding to 4 = 0 at the surface, must be at least of order one 
otherwise the electric current will tend to infinity as we approach the surface of 
the fluid. When these conditions are satisfied the magnetic pressure on the fluid 
surface is zero and the possible equilibrium configuration depends on us. If v, = 0, 
the potential must be constant over the surface and thus the surface will be a 
sphere. Indeed, it was shown by Ranger (1970) that a solution where the fluid 
surface is spherical can be constructed if we set 

f 2  = 2Kp$, g = a$ and P = K A ,  (23) 

where K ,  LX and A are non-zero constants; K is arbitrary but a and A must be 
suitably chosen. This solution is in fact the solution referred to in the last section 
with the roles of v and B interchanged. 
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